Elephant Moraine 96029, a very mildly aqueously altered and heated CM carbonaceous chondrite

This paper is a result of collaboration with researchers at the University of Glasgow who I met while interviewing for a position. I didn’t get the job, but I did get talking to Paula Lindgren and we discovered a common interest in using Raman Spectroscopy to study organic carbon. This publication is the first result of that, and is available as an open-access article.

A little bit of meteorite, under an electron microscope
A little bit of meteorite, under an electron microscope

The paper is a comprehensive study of a meteorite collected from Antarctica. Antarctica is a great place to find meteorites because they sit on top of the ice and are easy to spot – sometimes the flow of ice even concentrates them into particular areas to makes things even easier. This meteorite is classified as a “CM carbonaceous chondrite” and has experienced very little change since it was part of the protoplanetary disc billions of years ago. Therefore we can use it like a time capsule to look at what the early solar system was like.

However, some meteorites are better time capsules than others. As they float around the solar system, they can build up ice, which can then be melted by radioactivity and the water released can alter the crystallography of the meteorite. Our paper uses a wide range of techniques to characterise the meteorite and show that it is one of the least altered carbonaceous chondrites ever found.

The techniques used included electron microscopy (both scanning and transmission techniques; SEM and TEM), X-ray analysis, X-ray diffraction, thermogravimetric analysis (TGA), oxygen isotope measurements and Raman Spectroscopy. My contribution was to use my automatic Raman processing technique to determine how crystallised the carbon in this meteorite was in comparison to carbon in other meteorites.

Mobilization and transport of coarse woody debris to the oceans triggered by an extreme tropical storm

This paper, led by Josh West and colleagues in Taiwan, was published in Limnology and Oceanography. The full text is available via the journal website, since all L&O papers become open access after three years.

The island of Taiwan, in the South China Sea, has an interesting, yet devastating, combination of climate, biology and geology. It sits on the plate boundary between Eurasia and the Phillipines, which are moving into each other and causing the island to rise out of the ocean. This leads to earthquakes as the land is pushed up, and rapid erosion as the mountains get steeper and taller. The mountain sides collapse as landslides, producing sediment that is prone to being washed away by Taiwan’s many rivers. These rivers may not be the longest in the world, but they carry a lot of water, because Taiwan sits in the tropical zone where the year-round high levels of rainfall are topped up by several typhoons each year. The final piece of this jigsaw is the biology – being in a warm, wet region means that Taiwan is very biologically productive, with extremely fast forest growth rates.

A Taiwanese reservoir after Typhoon Morakot
A Taiwanese reservoir after Typhoon Morakot

Coupling all of these features together leads to a heavily forested mountainous island on which the hillsides are regularly landsliding and generating woody debris (tree trunks, branches, shrubs etc.) The large typhoons that hit the island each year provide water which washes the woody debris into the rivers and then out to the ocean.

In 2009, Taiwan was struck by a particularly devastating tropical cyclone, Typhoon Morakot. The island received about 4 metres of rainfall in just a couple of days, enough to cause rivers to burst their banks, washing away entire villages and unfortunately leading to several deaths. I visited the island a few months later, and the clear-up operation was still going on. Beside the rivers was up to a metre of chaotic sediment with tree branches sticking out of it, since the waters had carried everything off the hillside and dumped it when the floods receded. A lot of the tree trunks made it all the way through the river, out to the sea. They washed up on the shoreline around Taiwan, and were reported as far away as Japan.

A Taiwanese river channel filled with logs after the storm
A Taiwanese river channel filled with logs after the storm

These trees contain a lot of carbon, which has been moved from the hillside to the floodplain and out to the sea. Our study tried to work out just how much carbon, in the form of coarse woody debris, was being transported during this storm. Single river channels, such as the picture above, could contain 40 million tonnes of carbon – how much carbon was washed away by the whole storm?

There were two independent methods used to make the carbon estimates. The first one compared aerial photography before and after the storm to look at how much area was affected by landslides, and how much of the island was covered in forest. If you combine the forest cover data with the landslide map, and correct for areas where landslides do not deliver the woody debris to the river network, an estimate of carbon mobilisation can be made

The second method used reservoirs as sampling facilities. Reservoirs have filters to stop large trees going through their exit pipelines, and so any woody debris reaching the reservoir will be stopped at the dam (see the top picture for an extreme example). Knowing the area of land that drains into the reservoir, and the amount of wood trapped at the dam, you can scale up to the area of the entire river catchment.

Both of these methods produced similar results, they agreed that there was a shocking amount of carbon washed to the ocean during the storm. The storm delivered 3.8 – 8.4 Teragrams of woody debris from Taiwan to the ocean, which represents 1.8 – 4.0 Teragrams of carbon. This is about 1/4 the annual delivery of carbon from the Amazon River, but most of that is as small particles. The woody debris delivery in these few days was over 10 times greater than the annual woody debris delivery from the Amazon. So one single event on a small island was significant from a global point of view, but how much carbon is a Teragram?

One Teragram is equal to one million tonnes; an oil tanker can carry 300 000 tonnes of oil (mostly carbon) and therefore the storm delivered 10 oil tankers worth of carbon to the ocean. Obviously this event is not as disastrous as an oil tanker spill – the woody material will rot down and provide food for ocean-living creatures as well as potentially being buried safely in the sediments.

Our paper shows just how much carbon can be washed away by a single storm, and highlights that large pieces of woody debris, too large to analyse by most techniques, are an important and probably under-studied element of the organic carbon cycle.

GDGT distributions on the East Siberian Arctic Shelf

Our paper, “GDGT distributions on the East Siberian Arctic Shelf: implications for organic carbon export, burial and degradation” has now been published. You can download the paper, and the underlying data, from the Biogeosciences website here.

As I mentioned before, this paper has been submitted, reviewed and published completely open-access. This means that the original paper, the reviews and our response are all archived online forever. All of this is available freely to anyone, without the need to pay for access. You are free to copy, distribute and make use of the data and graphs as long as the original paper is cited (also known as a CC-BY copyright license)

Boxplots showing how GDGT biomarkers vary offshore
Boxplots showing how GDGT biomarkers vary offshore

In the paper we show the first map of GDGT biomarkers from the East Siberian Arctic Shelf. This region is extremely remote yet very important within the global carbon cycle. Our work shows that this is an area of complex interaction between rivers, coastal erosion and open ocean productivity. The GDGT biomarkers are very useful here as a tracer of carbon being washed away by the rivers and being produced in the oceans, and this allowed me to make a model of the Arctic Ocean in this region to better understand how all of the different processes interact.

Our model of biomarker export across the Arctic Shelf
Our model of biomarker export across the Arctic Shelf

As an author, the publishing process for Biogeosciences was interestingly different. There was a reasonable amount of time between submitting the paper and final publication, but that was mostly due to the interactive public discussion stage which most journals do not have. During this time the paper was available and citable, which means that although it was relatively slow progress towards final publication the story was out there very quickly. I’m keen to go for this style of publishing again in the future.

Redistribution of multi-phase particulate organic carbon in a marine shelf and canyon system during an exceptional river flood

I have recently had a paper accepted in the journal “Marine Geology“, which looks the transport of organic carbon during a major typhoon in Taiwan: “Redistribution of multi-phase particulate organic carbon in a marine shelf and canyon system during an exceptional river flood: Effects of Typhoon Morakot on the Gaoping River–Canyon system”.

Typhoon Morakot was a particularly severe tropical cyclone that hit the island in 2009, causing flooding, mudslides and hundreds of deaths. From an organic geochemistry perspective, it also transported sediment and organic carbon from the hillsides and floodplains out to the South China Sea. Some of this carbon was “fresh” material, coming from trees, grass, shrubs and soil. Other parts of the carbon was “fossil” carbon, sourced from the mountains running down the centre of the island, or from sedimentary rocks in the foothills and floodplains. It is important for the global carbon cycle to understand how much of the land-sourced (terrestrial) carbon makes it to the ocean floor, because this process can lead to carbon being stored in the sediments for millions of years.

Out at sea, all of this organic carbon and sediment was mixed together with material produced in the water column, by algae and plankton. Mixing three carbon sources together makes it very difficult to work out how much of each one is present in a sample, which is where my work comes in. By combining measurements of the nitrogen to carbon ratio with the carbon-13 to carbon-12 isotope ratio, these three inputs can be identified. I did this for samples collected in the Gaoping Canyon, a deep submarine channel running from the island out to the deep sea. I found that terrestrial organic carbon was the dominant form of carbon present in the canyon and that therefore millions of tonnes of carbon were transported to and buried in the ocean by the typhoon.

Figure from the paper
Unmixing plant matter, bedrock OC and marine carbon

 

This carbon will most likely be locked away in these sediments for thousands or millions of years, while on the island more trees will grow to replace the ones washed away in the storm. In the process, carbon dioxide will be taken out of the atmosphere, so the storm-flood-burial cycle should go some way towards slowing the rate of climate change.

If you would like to download the paper, it is available freely via open access or as a PDF.

GDGT distributions on the East Siberian Arctic Shelf: Discussion paper

My last post talked about Open Access publishing, and the various philosophies for spreading (and/or making money from) academic knowledge. Now there is a chance to play an active part in the publishing process. My latest paper has been submitted to a journal called “Biogeosciences” which is administered by the European Geosciences Union (EGU). Their journals are published using a super open process, where more than just the final paper is released free-of-charge to the world. Whereas in regular Open Access publishing anyone is free to read the final reviewed work, in EGU journals the initial version is also made available. Two reviewers are selected from the community, and their reviews are shown on the website as well. Everyone else is free to read and comment on the paper, raising questions that the authors have to respond to. It is hoped that this system is a) transparent b) open to more (constructive) criticism than the standard two-review system and c) faster, since the paper is available for people to read at an earlier stage of the process.

A figure from the paper showing land-sourced GDGT molecules
A figure from the paper showing land-sourced GDGT molecules

Our paper discusses the distribution of GDGT biomarkers on the East Siberian Arctic Shelf. We measured these biomarkers to determine whether the organic matter deposited on the shelf came from land or ocean sources. When we had made these measurements, a model was created to try and explain the observations and work out the budget for carbon being delivered to the shelf from large Arctic rivers.

If you want to read and comment on the paper it is available on the Biogeosciences website

What is: Open Access publishing?

Peer review is generally accepted to be the least-worst way to generate trust in the scientific publishing process. By allowing experts in the field to read, critique, confirm, challenge and improve your work before it enters the mainstream body of science, poor quality or erroneous work should be filtered out before it gets the chance to distort public perception and policy. However, it’s not without its critics. Anonymous reviews allow reviewers to partake in spiteful and/or personal attacks which do nothing to improve the science behind the work, and can delay or even prevent publication of perfectly acceptable work. Also, the system is based on a financial system that only seems to benefit the publishing companies. In traditional journals, scientists relinquish their copyright to a company that then charges them and their colleagues to read the work, restricting access to those in universities or with big budgets (individual papers can cost $30 or more, subscriptions run to the thousands). Journal reviewers and editors work for free, considering the process as part of their community obligation despite the for-profit journal getting the real benefits.

Recently, open-access publishing has started to change the way that ordinary people can read the research that they, through their taxes and charity donations, have paid for, but the business model for the publishers is generally similar. In a typical open access publishing workflow, the researchers submitting the paper pay an “article processing charge” (APC) once the work has been accepted. Paying this charge, which is often £1000 or more, allows them to retain the copyright, and lets anyone, anywhere in the world, read the paper for free. It shifts the costs for access from the distributed consumers, who would often lack the resources to pay for the research, to the universities producing the work in the first place. Most research grant bodies now request open access publishing, and have provided some funds to cover the APCs, for now at least. Reviewers and editors are still unpaid, and publishers still make a profit, in fact since many articles are not open access then universities (i.e. taxpayers) are on the hook for both the journal subscriptions and the APCs.

So why are researchers still paying these companies such large amounts of money (profit margins are amongst the best of any industry)? Well, academic promotion is mostly decided by your publication history; the easiest way to judge a publication history is to look at the journals that a researcher publishes in, rather than reading the papers themselves. Therefore the pressure is on, especially for young researchers, to publish in the most prestigious journals, and they tend to be the most expensive ones, where articles are either restricted access or have high APCs.

Recently, there has been a shift towards more open and accountable publishing systems, with journals allowing researchers to publish either draft versions or even the finished paper on their website without violating copyright. Many universities have created online repositories to let researchers store and share their work (mine is available through my Manchester profile page), which are imperfect, since it’s often hard to find the papers, but better than nothing.

Even within my short career, the way that people publish and access science has changed; open publishing is still in development and it’s likely that further innovation in the next 5-10 years will change the landscape even further.

Canadian permafrost as a source of easily-degraded organic carbon

The February issue of “Organic Geochemistry” will include a paper by David Grewer and colleagues from the University of Toronto and Queen’s University, Canada which investigates what happens to organic carbon in the Canadian High Arctic when the surface permafrost layer slips and erodes. This is a paper that I was involved in, not as a researcher but as a reviewer, helping to make sure that published scientific research is novel, clear and correct.

Map of Cape Bounty in the Canadian High Arctic
Map of Cape Bounty in the Canadian High Arctic

The researchers visited a study site in Cape Bounty, Nunavut, to study a process known as Permafrost Active Layer Detachments (ALDs). The permafrost active layer is the top part of the soil, the metre or so that thaws and re-freezes each year. ALDs are erosion events where the thawed top layer is transported down the hillslope and towards the river. Rivers can then erode and transport the activated material downstream towards the sea.

The team used organic geochemistry and nuclear magnetic resonance spectroscopy to find out which chemicals were present in the river above and below the ALDs. The found that the sediment eroded from the ALDs contains carbon that is easily degraded and can break down in the river, releasing CO2 to the atmosphere and providing food for bacteria and other micro-organisms in the water.

Automated Analysis of Carbon in Powdered Geological and Environmental Samples by Raman Spectroscopy

The first paper produced directly from my PhD research was published last month in the journal Applied Spectroscopy. Automated Analysis of Carbon in Powdered Geological and Environmental Samples by Raman Spectroscopy describes a method I developed for collecting and analysing Raman Spectroscopy data, along with Niels Hovius, Albert Galy, Vasant Kumar and James Liu.

I will discuss Raman Spectroscopy in depth in a future post on this site, but the short version is that Raman allows me to determine the crystal structure of pieces of carbon within my samples. A river or marine sediment sample can be sourced from multiple areas, and mixed together during transport. Trying to work out where a sample was sourced from can prove very difficult. However, these source areas often contain carbon of different crystalline states; if I can identify the carbon particles within a sample then the sources of that sample, even if they have been mixed together, can be worked out. The challenge in this procedure is that there can be lots of carbon particles within a sample, and each one might be subtly different. To properly identify each mixed sample, lots of data is required, which can laborious to process.

Each spectrum is classified according to its peak shapes.
Determining the types of carbon in a sample. Each spectrum is classified according to its peak shapes. Image (C) Applied Spectroscopy

My paper describes how lots of spectra can be collected efficiently from a powdered sediment sample. By flattening the powder between glass slides and scanning the sample methodically under the microscope, around ten high-quality spectra can be collected in an hour, meaning five to ten samples can be analysed in a day. Powdered samples are much easier to study than raw, unground, sediment, and I have shown that the grinding process does not interfere with the structure of the carbon particles, therefore it is a valid processing technique.

Once the data has been collected, I have devised a method for automatically processing the collected spectrum using a computer, which removes the time-consuming task of identifying and measuring each peak by hand. The peaks that carbon particles produce when analysed by Raman Spectroscopy have been calibrated by other workers to the maximum temperature that the rock experienced, and this allows me to classify each carbon particle into different groupings. These can then be used to compare various samples, characterise the source material and then spot it in the mixed samples.

Delegating as much analysis as possible to a computer ensures that each sample is treated the same, with no bias on the part of the operator, and also cuts down the time required to process each sample, which means that more material can be studied. The computer script used to analyse the samples is freely available and therefore other researchers can apply this to their data, enabling a direct comparison with any samples that I have worked on. This technique will hopefully prove useful to more than just my work in the future, and anyone interested in using it is welcome to contact me. While the paper discusses my application of the technique to Taiwanese sediments, I have already been using it to study Arctic Ocean material as well.

The paper itself is available from the journal via a subscription, and is also deposited along with the computer script in the University of Manchester’s open access library.

 

 

Subducted seafloor relief stops rupture in South American great earthquakes

This was my first published paper, based on research undertaken during my Masters. It is published in Earth and Planetary Science Letters, and available for download the MMU e-space repository.

The initial observation for this work was that ‘great’ earthquakes, those which measured more than magnitude 8.0, tend to have end points in the same place. An earthquake end point is the limit to the earthquake fault plane movement, shaking will take place outside of this zone but it is most violent in the regions above the fault plate movement. The figure below shows the rupture zones and end points for great South American earthquakes.

Rupture zones and subducting topography in South America
Rupture zones and subducting topography in South America

An initial inspection of the plate margin (where the incoming Pacific Plate is subducted underneath the South American Plate) suggested that when there are underwater mountains on the Pacific Plate coming into the subduction zone (black blobs on the figure above), these tend to match up with the end points of earthquakes. The figure below shows how topographic features (underwater mountains and ridges) match up with earthquake locations.

Subducting topography and earthquake locations
Subducting topography and earthquake locations

To test whether this was a real relationship, or just coincidence, I designed a model that produced earthquakes along the subduction zone. The model had two versions. In version one, earthquakes were placed in line along the subduction zone (as tends to happen in these situations, one earthquake starts at the end point of a previous one) but their end points were not constrained by anything. In the second version, if the earthquake tried to rupture past an incoming topographic feature, the rupture was stopped there.

By applying statistical tests to the model, I showed that the endpoints of earthquakes were far more likely than random chance to be located where topography > 1000m was being subducted. The model also showed that subducting topography led to a reduction in background earthquakes. At earthquake endpoints not associated with topography, there was an increased amount of smaller earthquakes releasing the built-up stress, but this was not seen at earthquake endpoints near to subducting topography. Therefore, subduction of a high seamount or ridge makes the subduction zone earthquake activity decrease (it becomes ‘aseismic’) which prevents both great earthquakes getting past, and smaller earthquakes from occurring.