GDGT distributions on the East Siberian Arctic Shelf

Our paper, “GDGT distributions on the East Siberian Arctic Shelf: implications for organic carbon export, burial and degradation” has now been published. You can download the paper, and the underlying data, from the Biogeosciences website here.

As I mentioned before, this paper has been submitted, reviewed and published completely open-access. This means that the original paper, the reviews and our response are all archived online forever. All of this is available freely to anyone, without the need to pay for access. You are free to copy, distribute and make use of the data and graphs as long as the original paper is cited (also known as a CC-BY copyright license)

Boxplots showing how GDGT biomarkers vary offshore
Boxplots showing how GDGT biomarkers vary offshore

In the paper we show the first map of GDGT biomarkers from the East Siberian Arctic Shelf. This region is extremely remote yet very important within the global carbon cycle. Our work shows that this is an area of complex interaction between rivers, coastal erosion and open ocean productivity. The GDGT biomarkers are very useful here as a tracer of carbon being washed away by the rivers and being produced in the oceans, and this allowed me to make a model of the Arctic Ocean in this region to better understand how all of the different processes interact.

Our model of biomarker export across the Arctic Shelf
Our model of biomarker export across the Arctic Shelf

As an author, the publishing process for Biogeosciences was interestingly different. There was a reasonable amount of time between submitting the paper and final publication, but that was mostly due to the interactive public discussion stage which most journals do not have. During this time the paper was available and citable, which means that although it was relatively slow progress towards final publication the story was out there very quickly. I’m keen to go for this style of publishing again in the future.

Redistribution of multi-phase particulate organic carbon in a marine shelf and canyon system during an exceptional river flood

I have recently had a paper accepted in the journal “Marine Geology“, which looks the transport of organic carbon during a major typhoon in Taiwan: “Redistribution of multi-phase particulate organic carbon in a marine shelf and canyon system during an exceptional river flood: Effects of Typhoon Morakot on the Gaoping River–Canyon system”.

Typhoon Morakot was a particularly severe tropical cyclone that hit the island in 2009, causing flooding, mudslides and hundreds of deaths. From an organic geochemistry perspective, it also transported sediment and organic carbon from the hillsides and floodplains out to the South China Sea. Some of this carbon was “fresh” material, coming from trees, grass, shrubs and soil. Other parts of the carbon was “fossil” carbon, sourced from the mountains running down the centre of the island, or from sedimentary rocks in the foothills and floodplains. It is important for the global carbon cycle to understand how much of the land-sourced (terrestrial) carbon makes it to the ocean floor, because this process can lead to carbon being stored in the sediments for millions of years.

Out at sea, all of this organic carbon and sediment was mixed together with material produced in the water column, by algae and plankton. Mixing three carbon sources together makes it very difficult to work out how much of each one is present in a sample, which is where my work comes in. By combining measurements of the nitrogen to carbon ratio with the carbon-13 to carbon-12 isotope ratio, these three inputs can be identified. I did this for samples collected in the Gaoping Canyon, a deep submarine channel running from the island out to the deep sea. I found that terrestrial organic carbon was the dominant form of carbon present in the canyon and that therefore millions of tonnes of carbon were transported to and buried in the ocean by the typhoon.

Figure from the paper
Unmixing plant matter, bedrock OC and marine carbon


This carbon will most likely be locked away in these sediments for thousands or millions of years, while on the island more trees will grow to replace the ones washed away in the storm. In the process, carbon dioxide will be taken out of the atmosphere, so the storm-flood-burial cycle should go some way towards slowing the rate of climate change.

If you would like to download the paper, it is available freely via open access or as a PDF.

GDGT distributions on the East Siberian Arctic Shelf: Discussion paper

My last post talked about Open Access publishing, and the various philosophies for spreading (and/or making money from) academic knowledge. Now there is a chance to play an active part in the publishing process. My latest paper has been submitted to a journal called “Biogeosciences” which is administered by the European Geosciences Union (EGU). Their journals are published using a super open process, where more than just the final paper is released free-of-charge to the world. Whereas in regular Open Access publishing anyone is free to read the final reviewed work, in EGU journals the initial version is also made available. Two reviewers are selected from the community, and their reviews are shown on the website as well. Everyone else is free to read and comment on the paper, raising questions that the authors have to respond to. It is hoped that this system is a) transparent b) open to more (constructive) criticism than the standard two-review system and c) faster, since the paper is available for people to read at an earlier stage of the process.

A figure from the paper showing land-sourced GDGT molecules
A figure from the paper showing land-sourced GDGT molecules

Our paper discusses the distribution of GDGT biomarkers on the East Siberian Arctic Shelf. We measured these biomarkers to determine whether the organic matter deposited on the shelf came from land or ocean sources. When we had made these measurements, a model was created to try and explain the observations and work out the budget for carbon being delivered to the shelf from large Arctic rivers.

If you want to read and comment on the paper it is available on the Biogeosciences website